C3 Numerical Methods

- **1.** <u>June 2010 qu. 6</u>
 - (i) Show by calculation that the equation $\tan^2 x x 2 = 0$, where *x* is measured in radians, has a root between 1.0 and 1.1. [3]
 - (ii) Use the iteration formula $x_{n+1} = \tan^{-1} \sqrt{2 + x_n}$ with a suitable starting value to find this root correct to 5 decimal places. You should show the outcome of each step of the process. [4]
 - (iii) Deduce a root of the equation $\sec^2 2x 2x 3 = 0.$ [3]
- **2.** <u>Jan 2010 qu.3</u>
 - (i) Find, in simplified form, the exact value of $\int_{10}^{20} \frac{60}{x} dx$. [2]
 - (ii) Use Simpson's rule with two strips to find an approximation to $\int_{10}^{20} \frac{60}{x} dx$. [3]

(iii) Use your answers to parts (i) and (ii) to show that
$$\ln 2 \approx \frac{25}{36}$$
. [2]

- **3.** <u>Jan 2010 qu. 8</u>
 - (i) The curve $y = \sqrt{x}$ can be transformed to the curve $y = \sqrt{2x+3}$ by means of a stretch parallel to the *y*-axis followed by a translation. State the scale factor of the stretch and give details of the translation. [3]
 - (ii) It is given that N is a positive integer. By sketching on a single diagram the graphs of $y = \sqrt{2x+3}$ and $y = \frac{N}{x^3}$, show that the equation $\sqrt{2x+3} = \frac{N}{x^3}$ has exactly one real root.

[3]

[3]

- (iii) A sequence $x_1, x_2, x_3, ...$ has the property that $x_{n+1} = N^{\frac{1}{3}} (2x_n + 3)^{-\frac{1}{6}}$. For certain values of x_1 and N, it is given that the sequence converges to the root of the equation $\sqrt{2x+3} = \frac{N}{x^3}$.
 - (a) Find the value of the integer *N* for which the sequence converges to the value 1.9037 (correct to 4 decimal places). [2]
 - (b) Find the value of the integer N for which, correct to 4 decimal places, $x_3 = 2.6022$ and $x_4 = 2.6282$.

4. <u>FP2 Jan 2010 qu 1 part i)</u>

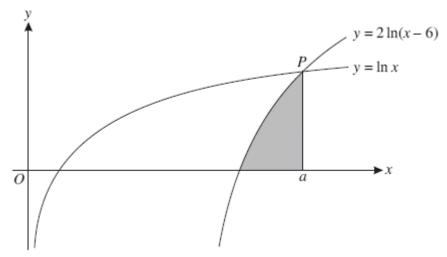
It is given that $f(x) = x^2 - \sin x$.

- (i) The iteration $x_{n+1} = \sqrt{\sin x_n}$, with $x_1 = 0.875$, is to be used to find a real root, α , of the equation f(x) = 0. Find x_2, x_3 and x_4 , giving the answers correct to 6 decimal places. [2]
- 5. <u>June 2009 qu. 4</u>

It is given that $\int_{a}^{3a} (e^{3x} + e^{x}) dx = 100$, where *a* is a positive constant.

(i) Show that
$$a = \frac{1}{9} \ln(300 + 3e^a - 2e^{3a}).$$
 [5]

- (ii) Use an iterative process, based on the equation in part (i), to find the value of *a* correct to 4 decimal places. Use a starting value of 0.6 and show the result of each step of the process.
- 6. June 2009 qu. 8



The diagram shows the curves $y = \ln x$ and $y = 2 \ln(x - 6)$. The curves meet at the point *P* which has x-coordinate a. The shaded region is bounded by the curve $y = 2 \ln(x - 6)$ and the lines x = aand y = 0.

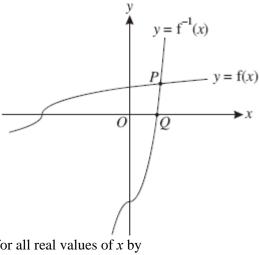
(i)	Give details of the pair of transformations which transforms the curve $y = \ln x$ to the	e curve	
	$y = 2\ln(x-6).$	[3]	
(ii)	Solve an equation to find the value of <i>a</i> .		[4]

- Solve an equation to find the value of *a*. (ii)
- Use Simpson's rule with two strips to find an approximation to the area of the shaded (iii) region. [3]
- 7. Jan 2009 qu. 2

(i)	Use Simpson's rule with four strips to find an approximation to	$\int_{4}^{12} \ln x \mathrm{d}x,$	
	giving your answer correct to 2 decimal places.		4]
	c ¹² 10		

(ii) Deduce an approximation to
$$\int_{A}^{a} \ln(x^{10}) dx$$
. [1]

8. Jan 2009 qu. 6



The function f is defined for all real values of x by

$$f(x) = \sqrt[3]{\frac{1}{2}x+2}$$
.

The graphs of y = f(x) and $y = f^{-1}(x)$ meet at the point *P*, and the graph of $y = f^{-1}(x)$ meets the *x*-axis at Q (see diagram).

Find an expression for $f^{-1}(x)$ and determine the *x*-coordinate of the point *Q*. (i)

[3]

(ii) State how the graphs of y = f(x) and $y = f^{-1}(x)$ are related geometrically, and hence show that the *x*-coordinate of the point *P* is the root of the equation $x = \sqrt[3]{\frac{1}{2}x+2}$.

[2]

(iii) Use an iterative process, based on the equation $x = \sqrt[3]{\frac{1}{2}x+2}$, to find the *x*-coordinate of *P*, giving your answer correct to 2 decimal places. [4]

9. <u>FP2 Jan 2009 qu. 2 part i)</u>

It is given that α is the only real root of the equation $x^5 + 2x - 28 = 0$ and that $1.8 < \alpha < 2$.

(i) The iteration $x_{n+1} = \sqrt[5]{28 - 2x_n}$, with $x_1 = 1.9$, is to be used to find α . Find the values of x_2 , x_3 and x_4 , giving the answers correct to 7 decimal places. [3]

10. June 2008 qu. 4

The gradient of the curve $y = (2x^2 + 9)^{\frac{5}{2}}$ at the point *P* is 100.

- (i) Show that the *x*-coordinate of *P* satisfies the equation $x = 10(2x^2 + 9)^{-\frac{3}{2}}$. [3]
- (ii) Show by calculation that the *x*-coordinate of *P* lies between 0.3 and 0.4. [3]
 - (iii) Use an iterative formula, based on the equation in part (i), to find the *x*-coordinate of *P* correct to 4 decimal places. You should show the result of each iteration. [3]

11. Jan 2008 qu. 2

- The sequence defined by $x_1 = 3$, $x_{n+1} = \sqrt[3]{31 \frac{5}{2}x_n}$ converges to the number α .
- (i) Find the value of α correct to 3 decimal places, showing the result of each iteration. [3]
- (ii) Find an equation of the form $ax^3 + bx + c = 0$, where *a*, *b* and *c* are integers, which has α as a root. [3]

12. June 2007 qu. 6

(i) Given that
$$\int_0^a (6e^{2x} + x)dx = 42$$
, show that $a = \frac{1}{2}\ln(15 - \frac{1}{6}a^2)$. [5]

(ii) Use an iterative formula, based on the equation in part (i), to find the value of *a* correct to 3 decimal places. Use a starting value of 1 and show the result of each iteration. [4]

13. Jan 2007 qu. 3

- (a) It is given that *a* and *b* are positive constants. By sketching graphs of $y = x^5$ and y = a - bxon the same diagram, show that the equation $x^5 + bx - a = 0$ has exactly one real root. [3]
- (b) Use the iterative formula $x_{n+1} = \sqrt[5]{53 2x_n}$, with a suitable starting value, to find the real root of the equation $x^5 + 2x 53 = 0$. Show the result of each iteration, and give the root correct to 3 decimal places. [4]
- 14. Jan 2007 qu. 8

The diagram shows the curve with equation $y = x^8 e^{-x^2}$. The curve has maximum points at P and Q. The shaded region A is bounded by the curve, the line y = 0 and the line through Q parallel to the *y*-axis. The shaded region *B* is bounded by the curve and the line *PQ*.

(i)	Show by differentiation that the x-coordinate of Q is 2.	[5]
(ii)	Use Simpson's rule with 4 strips to find an approximation to the area of region <i>A</i> . Give your answer correct to 3 decimal places. [4]	

(iii) Deduce an approximation to the area of region *B*.

15. June 2006 qu. 3

The equation $2x^3 + 4x - 35 = 0$ has one real root.

- Show by calculation that this real root lies between 2 and 3. (i) [3]
- (ii) Use the iterative formula

$$x_{n+1} = \sqrt[3]{17.5 - 2x_n}$$
,

with a suitable starting value, to find the real root of the equation $2x^3 + 4x - 35 = 0$ correct to 2 decimal places. You should show the result of each iteration. [3]

16. Jan 2006 qu. 7

The diagram shows the curve with equation $y = \cos^{-1}x$.

- Sketch the curve with equation $y = 3 \cos^{-1} (x 1)$, showing the coordinates of the points (i) where the curve meets the axes.
- By drawing an appropriate straight line on your sketch in part (i), show that the equation 3 (ii) $\cos^{-1}(x-1) = x$ has exactly one root. [1]
- Show by calculation that the root of the equation $3 \cos^{-1} (x 1) = x$ lies between (iii) 1.8 and 1.9.
- The sequence defined by $x_1 = 2$, $x_{n+1} = 1 + \cos\left(\frac{1}{3}x_n\right)$ (iv)

converges to a number α . Find the value of α correct to 2 decimal places and explain why α is the root of the equation $3\cos^{-1}(x-1) = x$. [5]

[3]

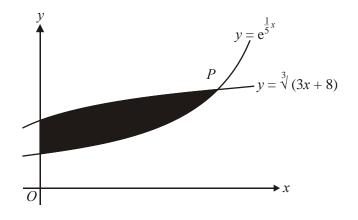
[2]

[2]

17. Jan 2006 qu. 8

The diagram shows part of the curve $y = \ln(5 - x^2)$ which meets the *x*-axis at the point *P* with coordinates (2, 0). The tangent to the curve at *P* meets the *y*-axis at the point *Q*. The region *A* is bounded by the curve and the lines x = 0 and y = 0. The region *B* is bounded by the curve and the lines PQ and x = 0.

- (i) Find the equation of the tangent to the curve at *P*.
- (ii) Use Simpson's Rule with four strips to find an approximation to the area of the region A, giving your answer correct to 3 significant figures. [4]
- (iii) Deduce an approximation to the area of the region *B*. [2]
- 18. June 2005 qu. 8



[5]

The diagram shows part of each of the curves $y = e^{\frac{1}{5}x}$ and $y = \sqrt[3]{(3x+8)}$. The curves meet, as shown in the diagram, at the point *P*. The region *R*, shaded in the diagram, is bounded by the two curves and by the *y*-axis.

- (i) Show by calculation that the *x*-coordinate of P lies between 5.2 and 5.3. [3]
- (ii) Show that the *x*-coordinate of *P* satisfies the equation $x = \frac{5}{3} \ln(3x+8)$. [2]
- (iii) Use an iterative formula, based on the equation in part (ii), to find the *x*-coordinate of *P* correct to 2 decimal places.
- (iv) Use integration, and your answer to part (iii), to find an approximate value of the area of the region *R*. [5]
- **19.** June 2005 qu. 4

(a) The diagram shows the curve
$$y = \frac{2}{\sqrt{x}}$$
.

The region *R*, shaded in the diagram, is bounded by the curve and by the lines x = 1, x = 5 and y = 0. The region *R* is rotated completely about the *x*-axis. Find the exact volume of the solid formed.

[4]

[4]

[3]

(b) Use Simpson's rule, with 4 strips, to find an approximate value for

$$\int_{1}^{5} \sqrt{(x^2 + 1)} \, \mathrm{d}x,$$

giving your answer correct to 3 decimal places.